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ABSTRACT

The goal of this study was to experimentally evaluate

and mathematically model the performance of phase change

thermal control devices containing high thermal-conductivity

metal matrices. Three aluminum honeycomb fillers were

evaluated at five different heat flux levels using n-oct-

adecane as the test material. Initially phase change per-

formance was evaluated with no filler in the n-octadecane

so that a base line performance for each heat flux level

could be established.

The experimental equipment consisted of a test cell,

two electric heaters, a watt meter, two ammeters, and a

multipoint recorder. The test chamber measured 15.24-by-

7.62-by-2.54 centimeters (6-by-3-by-1-inches). The cell

was heated by two 7.62-by-7.62 centimeters (3-by-3-inch)

electric heaters, which were held at a constant heat flux.

The amp and watt meters provided the measurement of the

heat flux to the heaters. Temperature responses to the

upset were measured by 16 copper-constantan thermocouples

located throughout the test cell.

The system was mathematically modeled by approximating

the partial differential equations with a three-dimensional-

implicit-alternating direction technique. This implicit

method was used so that the small time step required by
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the presence of the metallic filler in the explicit method

could be eliminated. The boundary conditions used in this

model were a temperature profile on the copper heating plate

and insulated on the other five sides.

The mathematical model predicts the system quite well.

All of the phase change times are predicted. The heating

of the solid phase is predicted exactly while there is some

variation between theoretical and experimental results in

the liquid phase. This variation in the liquid phase could

be accounted for by the fact that there are some heat losses

in the cell and there could be some convection in the ex-

perimental system.
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INTRODUCTION

Phase-change phenomena have received wide scientific

attention for some time. Phase change is of significant

importance in many technical problems such as solidifi-

cation of an asphalt layer, melting and solidification of

metals and alloys and general crystal growth. In recent

years solid-liquid phase change has been used for thermal

control devices in space vehicles. In concept, such

materials would be used in passive systems that employ

the process of melting or solidification to remove or add

thermal energy from or to a system.

In a study by Northrop Corporation (1), the prop-

erties that phase-change materials must have in order to

control the temperature of electronic equipment were found.

The phase-change material should be nontoxic, chemically

inert, stable and noncorrosive. The material should also

have small density variations with a high latent heat of

fusion. The material should also melt in 283 to 3380 K

(50-to 1500 F) range. N-paraffins with an-even number of

carbon atoms are the most promising phase-change materials.

N-octadecane was used in this study.

Virtually all of the currently used phase-change

materials have a low thermal diffusivity. Therefore,

their use in phase-change thermal control units is hampered

1



2

by their inability to conduct heat. Their thermal con-

ductivities are on the same order of magnitude as thermal

conductivities of some of the best insulating materials.

A method to improve heat transfer rate of the phase-change

material is to surround the phase-change material with a

high thermally conductive metal matrix. The metal would

conduct the heat and the phase-change material would

absorb the heat load.

Bentilla, Sterrett and Karre (1) evaluated a number

of metallic fillers in a phase-change environment. They

evaluated aluminum foam, aluminum wool, aluminum honeycomb

and copper foam. Their work showed that the most advanta-

geous type of filler was the aluminum honeycomb. Hale,

Hoover and O'Neill (2) developed a method using an overall

energy balance to predict the performance of thermal control

phase-change devices. In their study they found that by

neglecting three-dimensional heat transfer significant

errors were introduced. The goal of this study was to

increase the understanding of increased thermal diffusivity

phase-change devices by experimentally evaluating and

mathematically modeling them. With the aid of the three-

dimensional mathematical model developed in this study

engineers will be able to design phase-change thermal

control units more efficiently.



LITERATURE SURVEY

There has been a large amount of literature pub-

lished on the subject of phase-change phenomena. This

literature survey deals with only a small portion of the

published material. One of the first studies of phase

change was made by Carslaw and Jaeger (3). In their study

they developed an approximate mathematical model for semi-

infinite bodies. They discussed the problem of modeling

a system with a moving interface. No exact solutions

were given for the mathematical modeling of finite bodies

with phase change.

At this institution two studies have been completed

which are concerned with the one-dimensional interface

equation given by Arpaci (4). In the first study Pujado,

Stermole and Golden (5) developed a theoretical model for

the one-dimensional melting of a finite paraffin slab.

Finite difference methods were used to solve the partial

differential equations governing the physical system.

This model solved the two-phase one-dimensional heat-

transfer equations with phase change and variable thermal

properties. In their theoretical analysis Pujado, Stermole

and Golden neglected free convection in the liquid phase.

The results from the study were in agreement with those of

an earlier study by Northrop Corporation. The second study
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by Ukanawa, Stermole and Golden (6) was the investigation

of the solidification of a finite amount of liquid para-

ffin. A mathematical model was developed to solve the

two-phase heat-transfer equation with phase change. This

model used constant thermal properties for each phase and

moveable boundary conditions. The model neglected convec-

tion, supercooling and nucleation effects. The comparison

was good between theoretical and experimental results.

There have been three studies at this institution

which concern the two-dimensional phase-change problem.

Shah (7) investigated the solidification of n-octadecane

using microphotographic equipment and a temperature re-

corder. In this study a two-dimensional mathematical model

was developed to predict the temperature profiles in the

freezing paraffin and the average interfacial height during

the solidification process. The model neglected convection.

An approximate method was used to calculate the phase

change. A presentation of the various types of phase-

change calculations is given by Dusinberre (8). Reasonably

good agreement was obtained between the experimental and

theoretical results. The second study by Bair., Stermole

and Golden (9) was an investigation of the gravity-induced

free convection in the melting of a finite paraffin slab.

Temperature profiles were measured when the test cell was

inclined at different angles to produce the free convection.

In this study a two-dimensional pure-conduction model was
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presented. Finite difference methods were used to solve

the governing partial differential equations while the

method of excess degrees was used to calculate the phase

change. Since the model neglected convection there were

significant differences between the theoretical and

experimental results. This study showed that gravity-

induced free convection can be important in the melting

process. The third investigation by Ukanawa (10) studied

the effect of gravity-inducedt free convection upon the

solidification of a finite paraffin slab. A two-dimen-

sional heat-transfer model was developed in this study.

The model used an important velocity profile and a

limiting velocity in the convection calculation. A pseudo

heat-capacity was used to calculate the phase change.

Other papers have also been published which deal with

the melting of finite slabs. Chi-Tien and Yin-Chao Ten (11)

presentcd an approximate solution for the temperature dis-

tributions and melting rate. The heat transfer swas by

natural convection caused by buoyancy forces. Goodman and

Shea (12) developed a series solution to solve the one-

dimensional problem of the melting of a finite slab.

Crank and Nicholson (13), Douglas and Rachford (14),

Peacemian and Rachford (15) and Brian (16) all developed

three-dimensional finite difference techniques to solve

the unsteady state heat-conduction partial differential

equation. The three-dimensional alternating direction
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technique developed by Brian was used in this study.

Brian showed this technique is unconditionally stable and

has the accuracy of the Crank-Nicholson method.

Grodzka (17) suggested two methods to increase the

thermal diffusivities of phase-change materials and thus

the heat-transfer rate into the thermal control unit. One

was to put metallic panels in with the phase-change material.

The other was to mix the phase-change material with a com-

patable but higher thermal dciffusivity material. She pursued

the second method and suggested several possible materials

that could be mixed with the phase-change material. In

their recommendation for the improvements of thermal control

phase-change packages, Shlosinger and Bentilla (18)

recommended that a metallic filler be added to increase

the heat transfer rate. Bentilla, Sterrett and Karre (1)

evaluated a number of metallic fillers in a phase-change

environment. These fillers included aluninum wool,

aluninun foam, aluminum honeycomb and copper foam. Their

work showed that the aluminum honeycomb was the most

advantageous geometry for a high thermal diffusivity

filler material. Hale, Hoover and O'Neill (2) developed

a method by which the ratio of the phase-change material

to the filler material may be optimized. They used an over-

all ener-y balance to optimize the ratio of the filler

material area to phase-change material area as a function

of the hot plate temperature.



THEORY

The finite difference equation which can be used to

mathematically model a nonhomogeneous system with phase

change will be developed in this section. The test cell

was heated from the top to minimize convection, however,

presence of the metal matrix is likely to cause convection.

The paraffin closer to the metal matrix will heat up

faster due to the high rate of heat transfer through the

metal and this situation will cause some convection. The

convection caused in this way will be considered negligible.

Since the assumption was made that convection currents

have no significant effect on the heat transfer in the

test chamber, this development will neglect convection.

For a discussion of mathematically modeling a phase-change

system with convection see reference 10. The general three-

dimensional heat-conduction model will be developed first,

then the three-dimensional alternating direction technique

of Brian (16) will be discussed. Finally, the general

heat-conduction equation and the three-dimensional alter-

natirng direction technique will be applied to the non-

homogeneous phase-change problem in this study.

General Three-Dimensional Equation

The general heat-conduction equation may be derived

by making an energy balance on a three-dimensional non-

7
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homogeneous nodal system. Making'an energy balance on

node i,j,k in figure 1 yields

Energy in - energy out + energy generated

= energy accumulated (1)

or,

(PCpV)ef
f

(T*(i,j,k)-T(i,j,k)) = (qxAx)in-(qxAx )oAut

At
+ (qyAy)in-(qyAy)out

+ (qzAz) in-(qzAz)ou

+ GV' (2)

where

qx = the heat flux in the x-direction

qy = the heat flux in the y-direction

qz = the heat flux in the z-direction

A = the cross sectional area of the node i,j,k
x

perpendicular to the x-direction

Ay = the cross sectional area of the node i,j,k

perpendicular to the y-direction

A = the cross sectional area of the node i,j,k
z

perpendicular to the z-direction

G = energy generated per volume

V ' = volume of the material generating energy

T* = the temperature at time t+At

T = the temperature at time t

t = time
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At = time increment

(pCpV)eff = the effective (pCpV) for a nonhomo-

geneous system

The heat flux may be found in terms of the temperature

difference of the nodal system from Fourier's law. From

Fourier's law one obtains

(qx)in = K(T(i-1,j,k)-T(i,j,k))/Ax (3)

where

K = the thermal conductivity of the material

Ax = the incremental distance between nodes in the

x-direction

Wtriting a similar equation for each of the other heat flux

terms in equation (1) and substituting back .into equation

(1) yields

(pCpV)eff (T*(i,j,k)-T(i,j,k)) =

At

((KA)x)eff (T(i-l,j,k)-T(i,j,k))/ jx x-

((KA)x)eff (T(i,j,k)-T(i+l,j,k))/ax +

((KA)y)eff (T(i,j-l,k)-T(i,j,k))/y -

((KA)y)eff (T(i,j,k)-T(i;j+l,k))/ay +

((KA)z)eff (T(i,j,k-1)-T(i,j,k))/Az -

((KA)z)eff (T(i,j,k)-T(i,j,k+l))/Az + GV' (4)
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where

((KA))eff = the effective thermal conductivity times

the effective area in the x-direction for

a nonhomogeneous system

((KA)y)eff = the effective thermal conductivity times

the effective area in the y-direction for

a nonhomogeneous system

((KA)eff = the effective thermal conductivity times

the effective area in the z-direction for

a nonhomogeneous system

Ay = the incremental distance in the y-direction

6A7 = the incremental distance in the z-direction

Equation (4) is the general three-dimensional heat-

conduction equation written in an explicit finite difference

form. To use this equation one must define and evaluate the

effective pCpV and the effective KA terms. The effective

pCpV will be defined as the sum of the pCpV terms repre-

senting each material present in the node or,
N

(pCpV)eff = PnpnVn (5)

where

N = the number of different materials present in the

node

This is just the sum of the heat capacitance of each of

the different materials. An expression for the effective
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KA term can be found by looking at the one-dimensional

steady state energy balance on a nonhomogeneous node. A

three-dimensional system could be used to derive this

expression, but the analysis is simpler in one-dimension

while the same result is obtained. An energy balance on

node m in figure 2 yields

(qA)in-(qA)out = 0 (6)

The heat flux into node m is the sum of the heat which flows

through each of the different materials, or

(qA)in= Alq1 + A 2 q2 + A
3

q
3

(7)

where

q1 = the heat flux through material 1

q2 = the heat flux through material 2

q3 = the heat flux through material 3

A1 = the area of material 1 perpendicular to the

heat flux

A 2 = the area of material 2 perpendicular to the

heat flux

A
3

= the area of material 3 perpendicular to the

heat flux

From Fourier's law the heat flux terms may be evaluated as

follows:

(qA)i
n

= (KA)eff (T1-Tm)/Ax (8)

A1 q
1

=(KA)1 (T 1 1
-Tlm)/Ax (9)
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A2 q 2 = (KA) 2 (T 2 1 -T 2 m)//x (10)

3q 3 (IA)3 (T31-T3m)/x (11)

Substituting equations (8) through (11) into equation (7)

yields

(KA)eff (T1 -Tm) = (KA)1 (T 1 1-Tlm) + (KA)2 (T 2 1-T2m)

+ (KA) 3 (T 3 1
-T3m ) (12)

Since there is assumed to be no gradients in a node in a

finite difference network the following is true.

T T =T T (13)
1 11 21 T31 (13)

Tm T=Tlm T = T3n (14)

The effective KA may be found by substituting equations (13)

and (14) into equation (12) and dividing by T -T. This
1 m

procedure yields

(KA)eff = (KA)
1

+ (KA)2 + (KA)
3 (15)

or more generally

N
(KA)eff = KnAn (16)

For the nonhomogeneous system we must define an effective

pCpV for each node and an effective KA for each of the six

sides for each node. Equation (4) may now be rewritten in

terms of the above relations as

T*'(i,j,k)-T(i,j,k) =

At(KA(i,j,k) X)eff (T(i-1,j,k)-T(i,j,k))

Ax(pCpV(ij,k)) eff
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- At(KA(i+l,j,lk)x) eff (T(i,j,k)-T(i+l,j-,k))

Ax(pC pV(i, j,I )eff

+ At(KA(i,j,k)y)eff (T(i,j-l,k)-T(i,j,k))

Ay(pC V(i,j,k) ff

- At(KA(i,j+l,k)y)eff (T(i,j,k)-T(i,j+l,k))

Ay(pCpV(i,j,k))eff

+,At(KA(ij,k)Z)eff (T(ijk-1)-T(i,jk))

az(pcpv(i,jl) )eff

- At(KA(i,j,k+l)z)eff (T(i,j,k)-T(i,j,k+l))

Az(pCpV(i,j,k))eff

+ GV' At
CpV(i,i,k)ff (17)

where

(KA(i,,k)x)eff = the effective KA term perpen-

dicular to the x-direction on the

left side of the node

(KA(i+l,j,k)x)eff = the effective KA term perpen-

dicular to the x-direction on the

right side of the node

(KA(i,j,k)y)eff the effective KA term perpen-
y eff

dicular to the y-direction on the

left side of the node

(KA(i,j+l,k)y)eff = the effective KA term perpen-

dicular to the y-cdirection on the

right side of the node
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(KA(i,i,k)Z)eff

(KA(i,j,k+l) z) e ff

pCp V(i,j,k)eff

= the effective KA term perpen-

dicular to the z-direction on the

left side of the node

= the effective KA term perpen-

dicular to the z-direction on the

right side of the node

= the effective pCpV term for the

no de

A si.mpler form of equation (17) can be written in. terms of

variable constants in place of the effective terms.

T-:-(i,j,k)-T(i,j,k) = C1l(T(i-l,j,k)-T(.i,j,k)) A t

- C 1 2 (T(i,jk)-T(i+1,j,k))At

+ C 2 1 (T(ij+1,k)-T(ij,l) )At

- C 2 2
(T(i,j,k)-T(i,j+l, k))At

+ C3 1 (T(ij,k-1 )-T(i,j,k))At

- C 3 2 (T(i,j,k)-T(i,j,k+))At + GC4 At (1

where the constants are defined as follows and are evaluatE

for each node as indicated.

Cll = (KA(ij,k)X)eff = KA(ijkn))x

pCpV(ijk)effAX AX2pCPV(ijkn) (1

C1 2 = (KA(i+lj,k)x)cff = EKA(i+l,j,k,n)x

pCV(i, j, Ik)efif Ax A pCpV(i,j,k,n) (2(

C2 1 = (KA(i,jk) )ff =jkn)

pc \(i- I<k)fArAy AYpcpV(ijkn) (2:
p J eff EPC 

8)

ed

1)

9)

0)



C22 -(KA(i,i+,k))eff

pCpV(i,i k)effA

PCpv( i, j, k) ef fa.z

C3 1 = (KA(i,j,k)Z)eff

PCpV(i,j k)effAz

C3 2 = (KA(i,j,ki+1)z)eff

pCpV(i, j, k)effAz

C4 = V'/(pCpV(ij,k)eff

= EKA(i,j+1, k,n)

Ay EpCpV(i,j,k,n)

= mKA(i,j,k,n)z

Az ECpCV(i,j,,k,n)

= EKA(i,j,k+l,n)z

Az2pCpV( i, j,k,n)

_- VI

Equation (18) may be .used over the entire nodal system

by just varying the above constants in order to define the

effective terms for each node. By redefining the constants

in equation (18) it may be used on the boundaries also. To

see how this may be done look at the one-dimensional form

of equation (18). Again a three-dimensional analysis will

give the same result, but the one-dimensional analysis is

simpler.

T*(i,j,k)-T(i,j,k) = C 1 (T(i-l,j,k)-T(i,j,k))At

+ C1 2 (T(i,jk)-T(i+1,j,k))At

+ GC4At (26)

Figure 3 shows the four types of boundary conditions

that can be used. Each type will be described in the

follcwiing section.

Type I: This boundary condition represents a system

in which there is heat transfer to a fluid. An energy

balance on node 2 of this nodal system yields

17

(22)

(23)

(24)

(25)pCpV(ij, k, n)



18

i,

T3

Type I

, T2 T3

Type II

T2 ' T3 - j T4

Type III

-~-T2 9T3 T4

U"
Type IV

Figure 3
Boundary Conditions

T4 T1 hi



19

T*2-T 2 = At hA(T1 -T2 ) - At KA(2)eff(T2 -T 3 )

pCpV(1)eff Ax pCpV(l)eff (27)

Comparison of equation (27) to equation (26) shows that

C = hA

pCpV( )eff (28)

C = 0; since there is no generation of (29)
energy in this node

Ci2 is defined by equation (20).

Types TT and III: These are two types of insulated

boundary conditions. An energy balance on node 2 of these

two systems yields

T*2-T = -At KA(2)eff(T9 -T 3 )

AxpCpV() eff (30)

Comparing equation (30) wi.th equation (26) indicates that

C 11 = ° (31)

G = 0 (32)

Type_ V: This type of boundary is insulated and

energy is being generated in the boundary node. An energy

balance on this system yields

T'i2-T 2 -At KA(2)eff(T2 -T 3 ) + U" V'At

Axp CpV(1) eff CpV(1) eff (33)

A comparison of this equation with equation (26) yields

Cll = 0 (34)

G = U" (35)



20

By setting G equal to the energy source in any node in

the system, there may be a generation term in any node

or boundary equation.

Three-Dimensional Alternating Direction Technique

The time step required by the stability criteria in

the explicit solution of equation (18) is extremely small

due to the presence of the metallic matrix. The required

time step is such that the computer time required to model

an experimental run exceeds the actual experimental run

time. Therefore, an implicit technique was used to elim-

inate the stability requirement on the size of the time

step. The implicit method used in this study is the

three-dimensional alternating direction technique developed

by Brian (16). This method is a variation of the Dourglas-

Rachford method that has the accuracy of the Crank-

Nicholson method and has been shown to be unconditionally

stable.

The three-dimensional technique of Brian solves for

three intermediate half-time-step temperatures and then

uses these to solve for the new full-time-step temperature.

The equations that demonstrate this method are as follows:

A 2T(ij,)) +A 2 (CT(i,j,k)) +A 2z(CT(i,j,k)) =
x y z

( i , k)-T( i j,
At/2 (36)
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Ax(CT':-(i, j,l)) + Ay2(CT'-:-(i,j,Ik)) + Az(CT(i,j,k)) =

T'-t,(i j, k)-T(i.i, i ,L
At/2 (37)

(CT(ijk)) +CTT-2 (ijk)) + 2(CT-- xC---*(i, j,k)) =

T-*( , j ,k)-T(i, j,k)

x

2

~~~~A4 ) 

10'

At/ 2 (38)

A 2 (CTT'(i,j,k)) + A2(CT'"-(i,j,k)) + A2(CT*`-'-*(i,j,k)) =

T' (i,:i,k)-T(i, j,lk)
At (39)

where

= C 1 T(i-l,j,k)-(C1 1 +C 1 2 )T(i,j,k)

+ C
1 2 T(i+l,j,k)

A2 (CT(i,j ,k))
y = C2 1T(i,j-l,k)-(C2 1+C2 2 )T(i,j,k)

+ C2 2 T(i,j+l,k)

Az(CT(i,j,k))z = C3 1 T(i,j,k-1)-(C 3 i+C 3 2 )T(i, j,k)

+ C 3 2 T(i,j,k+l) (42)

T = the temperature at time t

T' = the temperature at the new full time step t+At

T-, T"", TI--*- = the intermediate half-time-step

temperatures

(40)

(41)

k

A2(CT(i,j,k))
x
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C 1 l, C 3 2 are evaluated for each node

and are defined by equations (19) through (24). For

stability it is imperative that T*- be used. in the x-

direction difference, T** be used in the y-direction

difference and T**4- * be used in the z-direction difference.

A simpler form of the equations (36) through (39)

were used to solve the problem presented in this thesis.

When T*o-: is eliminated from equations (36) through (39),

the following set of equations results.

2 2 (CTT(i,j,k)) +y
A2(CT*·(ijk)) +2(CT(i,j,k)) + A(CT(ij,k))

T*(i, , k)-T(i,j ,k)
At/2 (43)

A2(CT**'(i,j,k))- 2(CT(i,jk))=
y y

At/2 (44)

,A(CT'(i,j,lc))- A2(CT(i,j,k)) =

A t/2 (45)

Equation (44) is the difference between equations (36)

and (37), while equation (45) is found by eliminating

T-*** from the difference of equations (37) and (38) and

the difference of equations (38) and (39). Equation (43)

relates the unlknown T* values along a row parallel to the

x-axis. When equation (43) is solved for the unknown T*

values 'a system of simultaneous equations results:
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bl T l 1 + C 1T 2 * = dl

a2T. + lT + + C2T3' = d2

a3T2* + b3T33 + c3T4 d3

(46)

a T* +b T-" +c T* - d
n-2 n-3 + bn-2 n-2 n-2 n-1 I dn-2

a T* + b T = d
n-1 n-2 n-l n-l n-1

The values of the coefficient ai, b i and c. are the

coefficients of the unknown T`- temperatures and ci. is

the sum of the remaining terms. It is supposed that the

grid points are designated by O, 1, 2, 3, . . n-I, n and

that TO and Tn are determined from the boundary conditions.

The matrix of the coefficients a, b, and c is

tridiagonal. There is a very efficient method of the

solution for the tridiagonal system. The value of T.*

in equation (46) can be found by following procedure:

T'n-l = Fn-1 (47)

T* i = Fi-ciT*n ,1/wi (48)

where :;7 and Fi are determined by the following recursion
1 I

formula

w. = b.-a.c. Withw b
i = bi-icil with I 1 = b 1 (49)

.i- 

F i = d.-a.Fi1 with Fi = dl/b1 (50)

b.
1

.-. , I . -- , f-



24

Equation (44) is then solved in a similar manner,

but this time the simultaneous equations relate T-:'-- values

along a row parallel to the y-axis. The solution of

equation (45) is then found in a similar manner with sets

of tridiagonal simultaneous equations relating T*- '*

values along a row parallel to the z-axis.

'onhomoneneous Phase-Change Problem

The system in this study consists of a hexagonal

aluminum matrix in n-octaclecane. The physical prop-

erties of aluminum and n-octadecane are given in ref-

erence 19 and 20 and are tabulated in table 1. Due to

the synlmetry of the system only a small portion of the

test cell must be modelled. Figure 4a shows how the

test cell can be broken down by lines of symmetry in the

two horizontal directions. Using these lines of symmetry

the filler system can be broken down into the system

shown in figure z4b. The sides in the x and y directions

are considered insulated from lines of symmetry. The

bottom of the cell will be considered insulated in this

analysis. Actually this may not be the case but fairly

good agreement between theoretical and experimental data

results if the bottom is considered insulated in the

theoretical analysis. The nodal system will be defined

as shown in figures 5a and Sb. The x-direction is indi-

cated by i, j indicates the y-direction and Ic represents
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Tab.le 1

Literature values of the physical properties for n-oct-
adecane and aluminum.

N-OCTADECANE

Density

p (soli) =

P (liquid)

Heat Capacity

Cp (solid) =

Cp (liquid) =

(-0.0003336)T + 1.0918; g/cc

(-0.0012505)T + 1.1316; g/cc

2.164; watt-sec/gml/°K

(0.008213)T - 0.14237; watt-sec/gm/°K

Conductivity

K (solid) = (-0.50054 x 10- 5 )T + 0.002914; watt/cm/°K

K (liquid) = (-0.50054 x 10-5)T + 0.002914; watt/cm/°K

Melt point = 300.60 °K

lHf (liquefaction er:thalpy)= 243.9; watt-sec/gm

ALUMIlNUMMI

p = 2.685 gin/cc

Cp = 0.9792 watt-sec/gm/°K

K = 0.1282 watt/cm/°K



Figure 4a

Aluilinitun Honey Comb

Figure 4b

Figure 4

Filler System
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Figure 5a

X-Y Plane of Nodal System

y

1 --x
z

-.

3

4

Top boundary
node

|I K Bottom boundary
insulated

Figure 5b

Onie Nodal ColuLn: Parallel to the z-axis

Figure 5

Experimental Nodal System
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the z-direction. When the system'of equations (43)

through (44) is applied to equation (18) the following

systems of equatioIs results, where At = At/2

For all i, j and k the ai, bi, ci and d. are

defined as fol].lows for equation (43).

a i = -CllAt (51)

b i = 1 + (Cl1 + C12) (52)

i = -C12 t (53)

d i =T(i,j,k) + (A 2 (CT(i,j, =)) +A (C(i,j,l)))At (54)
y z

C1 1, C
1 2 , C2 1 , C3 1

and C
3

2 are calculated for each node

accordi(,g to equations (19) and (24). If there is no

fi.ller in the node the volumle and area of the filler in

these calculations is set equal to zero. The irs;-ulated

boundary conditions are evaluated as follows:

when i and/or j = 2 for 3-l.<K

C11 °
(55)

C2 1
= 0

when i =I and/or j = J for 3<t-~1

C = O
(56)

C2 2 =0

i.hen I = K for 2<j<J and 2<i<I
(57)

C3 2 = 0
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A temperature boundary condition lwas used on the copper

heati.ng plate in this study. This condition is taken care

of by setting T(i,j,2) equal.to the heating plate temp-

crature.

For all i, j and k the aj, bj, cj and dj are defined

as follows for equation (44),

a. 2AC21t (58)

b. = 1 + (C + C2 2 ).t (59)

Cj = -C 2 LAt (60)
2o 2

dj T*(i,j,k)-(A y(CT(i,j,k)))At (61)

The boundary condition coefficients are calculated by

equatiorls (55) through (57).

For all i, j and 1: the ak, bk, c
k
and d

k
are defined

as follows for equation (45).

ak = -C31At (62)

bk = 1 + (C
3 1 + C3 2 )A (63)

ck = -C 3 2 At (64)Ck 3 'C~Z~ (64)

dk = 2T**(ij,k)-T(i,j,kT (i ,j,k)( i )) + E)At (65)

where

E = 0 for 2<i<I; 2<.jiJ; 4<qkK (66)

E = C 3 1 T(i,j,2) for 2<i<I; 2<j<J; k=3 (67)

ck = 0 for 2<<]i; 2<jcJ; k=3 (68)
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A summary of the various phase-change calculation

techriques is given by Dusinberre (8). A modification

of the method of excess degrees was used in this study.

Since the n-octadecane used in this study was not a pure

material (practical grade) it was allowed to melt over a

1 .76 0 Kl (30 F) temperature range. Since the heat capacity

*of n-octadccane is 'the same above and below the melting

point, a term which has the units of degrees results

when the latent heat is divided by the heat capacity.

This term is called. the excess degrees, which is the

number of degrees the node would have risen if the phase

change had not occurred. The following procedure is used

to calculate the phase change.

T(i,.j,k).R.Tm (69)

If T(i,j,k) < Tmo (70)

the node 'is still solid.

If T(i,j,k) > Tmo (71)

the node is in the process of melting.

If equation (71.) holds then the following procedure is

followe d.

Te(i,j,k) = (T(i,j,k)-Tmo).R.Hf/Cp (72)

If T (i,j,k) < Hf/Cp (73)

the node is partially melted and its temperature

is defined by
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T(i,j,k) = Tnc) + T'e(i,j,k) *Cp --. 76/ FHf (74)

But if

Te (i,j,k) f/Cp (75)

the node has melted. and the temperature of the now

liquid node is given by

T(i,j,k) = To(i,j,k) + 1.76 +

(T (i,j,k)C p - Hf)/Cp (76)

Each n1CW full-time-step temperature is corrected. by'the

above phase-change calculation.

A computer program was written using the above

procedure to solve the nonhomogeneous heat-transfer

problem with phase-change presented in the study. The

results are shown and described in the discussion of

results.



EXPERIMENTAL EoUIPMEPNT AND PROCEDURE

A description of the experimental equipment and the

experimental procedure are given in this section.

Equipnment

The equipment used in this study can be seperated

into three sections which are the test cell, the power input

measuring system and the temperature recording system.

These sections are discussed below.

Test Cell: The test cell (figures 6 and 7) con-

sister of a rectangular test chamber and. a heating plate.

The test chamber, 7.62-by-15.24-by-2.54 centimeters (3-by-

6-by-l-inches) was milled out of a block of plexiglass to

minimize the sources of leaks. The heating plate was a

10. 16-by-17.78-by-0.625 centimeter (4-by-7-by-0 . 25-inch)

copper plate upon which two 7.62-by-7.62 centimeter (3-by-

3-inch) electric heaters were epoxied. The electric heaters

were obtained from Electrofilmn Incorporated of North Holly-

wood California. The cell was sealed by compressing the

O-ring. During the run the cell was encased in approximately

3.81 centimeters (1.5 inches) of styrofoam.

Power Input Mfeasuring System: This systems shown in

figure 8, consisted of a seven and one half ampere

powxerstat, a Hickok watt meter and two Welch A.C. anm-

meters. The powerstat provided a variable source of power

32
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to the electric heaters. This power was measured by the

watt meter. The output of the watt meter is a direct

measure of the heat flux liberated by the electric heaters.

The function of the anmmeters was to insure that each

heater received the same current and thus provide even

heating.

Temperature Recordlini System: Sixteen copper-

constatan thermocouples and a Bristol multipoint recorder

comprised the temperature recordin: system. The recorder

was able to record each point every tfwo seconds with an

accuracy of + 0.4267 K (+ 0.750 F). The thermocouple wires

in the test cell were encased in glass probes. The glass

probes served two purposes. One was to insulate the

thermocouple wire from the metallic filler, the other was

to keep the thermocouple at a constant height. The thermo-

couple locations are given in table 2, where coordinate

0, 0, 0 is the left front upper corner of the test chamber.

Experimental Procedure

Experimental runs were made using the following

procedure.

1. The cell was filled with n-octadecane after the

filler material had been put into the test chamber. The

cell was then bolted down to seal it.

2. The cell was leveled to help minimize convection.

3. The recorder \was turned on to record the initial
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temperature of the cell.

4. When the test chamber had reached a constant

initial temperature the powerstat was turned on to start

the run.

5. The run was.allowed to continue until the hot

plate reached a temperature of 338.610 K (150°F). At this

temperature the plex-iglass began to deform around the

copper plate.
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Figure 6

Test Cell - Exploded View
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15.24 cm l

Front View of Test Cell

1/2 Scale

Side View of Test Cell
1/2 Scale

Figure 7

Frouuit and Side Views of Test Cell

Fi
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': -' " "- -17: - : : - .,.
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Table 2

THERMOCOUPLE LOCATIONS

The location of the coordinate 0,0,0 is the left front
upper corner of the test chamber. Tile x-axis is along
the 15.24 c:n side of the test chamber, the y-direction
is alor.ng the 7.62 cm 3ide while the z-direction is along
the vertical 2.54 cm.

x y z
Therm:iocouple ITc. cm cm cm

1 . ....... 1.905 .. 9525 0.635

2 . . . . . . . 5.715 .9525 0.635

3 ..... . . 9.525 .9525 0.635

4 . .. . . . .. 13.335 .9525 0.635

5 ......... 1.905 2.8575 1.27

6 ......... 5.715 2.8575 1.27

7 . .. . . . . . . 9.235 2.8575 1.27

8 ......... 13.335 2.8575 1.27

9 ......... 1.905 4.7625 1.905

10 ......... 5.715 4.7625 1.905

11 ......... 9.235 4.7625 1.905

12 . . . . . . . .. 13.335 4.7625 1.905

13 ........ 5.715 6.6675 2.54

14 ....... 9.235 6.6675 2.54

15 .* * . . . * 13.335 6.6675 2.54

16 . . . . . . . . . 7.62 3.81 0.0

i , , r ; ; 



DISCUSSION OF RESULTS

Three types of fillers were evaluated in this study

at five different levels of heat flux. A set of runs

was made i.ithout a filler to set a performance base line

for each power level. The three fillers that were tested

are presented in table 3. The thickness given in the table

is the wall thickness of the filler, wrhile the depth is

the length of the filler in the z-direction. In the theo-

retical analysis, average physical properties were used

for n-octadecane, while the literature values, given in

table 1, were used for the aluminum filler. The average

physical properties that were used are as follows:

Density

p(solid) = 0.8969 gm/cc

p (liquid) = 0.8545 gm/cc

Heat Capacity

Cp (solid) = 2.164 watt-sec/nm/°K

C (liquid) = 2.406 watt-scc/gm/° K

Thermal Conductivity

K (solid) = 0.001521 watt/cm/°K

K (liquid) = 0.00735 watt/cm/°K

When the literature value of the latent heat of

fusior; was used in the mathematical model, the phase-

change times were not predicted. This can be seen by

39
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Table 3

GEOMETRY DATA FOR THE ALUMINUM HEXAGONAL FILLERS

The thickress is the wall thickness of the filler, the cell
size is the distance across one cell of the filler, while
the depth is the distance in the z-direction.

Filler INo.
Thickness

Cil1
Cell Size

can

0.00889

0.011938

0.05969 0.635

2.

2.

Depth
cm

1.905

0.635

2.54

2.54

3. 1.7
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conJ.arinfg figures 9 a-d and 25 a-d. Therefore, a reduced

value of the latent heat of fusion was used. When this

value Wvas used it predictecd-the phase-change times more

accurately. The latent heat of fusion for n-octadecane

used in this study is given by Bain (21) and is as follows.

If = 182.83 watt-sec/gn

If the addition of fillers increases the heat-

transfer rate into the phase-change material, the hot

plate temperature should remain below a given control

temperature for a longer period of time as the amount of

filler is increased. In figure 10 the ratio of filler

wei. ht to n-octadcecane weight is plotted against a pseudo

control temperature. This pseudo control temperature is

the hot plate control temperature minus the initial temp-

erature. This figure is not intended to be used for

design, but rather to show that the experimental data

is consistant. However, if the control temperature minus

the initial temperature should be 22 0 K, this figure could

be used for approximate design purposes. This graph

should not be extrapolated beyond the experimental data.

Firtures 11 through 34 represent the theoretically

predicted temperature profiles comp)ared with the

corresponding experimental data. The thermocouple

locations are given in table 2. Response data from only

one thermocouple will be plotted for each height since there
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Figure 9

Theoretical and experimental temperature profiles for
filler ;o. 2 at 40 watts with the literature value for
the liquefaction enthalpy

Figure

9a 0.635 cm from the heating plate

9b 1.27 cm from the heating plate

9c 1.905 cm from the heating plate

9d 2.54 cm from the heating plate

Legenr; 

A PF2-40-1

0 F2-40-2

Theoretical
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is little difference between the temperature profiles

recorded by each thermocouple for a given height.

In figures 11 through 16 the theoretical and ex-

perimental data from the pure paraffin or no filler runs

are plotted. Due to the low heat-transfer rate of n-

octadecane and the hot plate temperature limitation

discussed earlier only a small portion of the n-octa-

decane melted (luring these runs. In these figures .the

paraffin at 0.635 cm has melted and the temperature of the

liquid is rapidly rising for all power levels. At 1.27

cm the paraffin has just melted in the 20 and 30-watt

runs while it has just reached the melt point in the 40

watt run. It is still below the melt temperature in the

50 and 100 watt runs. In the 20 and 30 watt runs the

paraffir is in the process of melting at 2.905 and 2.54

cm. In the 40, 50 and 100 watt runs the paraffin at 1.905

and 2.54 cm is still heating up to the melt temperature.

The hot plate temperature profiles for the pure paraffin

runs are presented in figure 16.

The filler runs are presented in figures 17 through

34. The fillers will be discussed in the order in which

they are presented in table 3, and referred to by the

number indicated in the table. In figures 17 to 22 the

theoretical and experimental data for filler number 1 are

plotted. In these rur:s more of the n-octadecane has
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Figure 11

Theoretical ar:d experimerntal temperature profiles at
20 watts for pure n-octadecarne

Figure

11a 0.635 cmn from the heating plate

11b 1.27 cm form the heating plate

11c 1.905 cm from the heating plate

11d 2.54 cin fro:n the heating plate

Legend

A P-20-1 

0 p-20-2

Theoretical
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Figure 12

Experimental and theoretical temperature profiles.
at 30 watts for pure rn-octadecane

Figure

12a 0.635 cm from the heating plate

12b 1.27 cm from the heating plate

12c 1.905 cm from the heating plate

12d 2.54 cm from the heating plate

Legend

/A P-30-1

o P-30-2
- Theoretical
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Figure 13

Experimental and theoretical temperature profiles
at 40 watts for pure n-octadecaine

Figure

13a 0.635 cim from the heating plate

13b 1.27 cm from the heating plate

13c 1.905 cm from the heating plate

13d 2.54 cm from the heating plate

Legend

/A P-40-1

0 P-40-2

Theoretical
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Figure 14

Experimental and theoretical temperature profiles
at 50 watts for pure n-octadecane

Figure

14a 0.635 cm from the heating plate

14b 1.27 cm from the heating plate

14c 1.905 cm from the heating plate

14d 2.54 cmi from the heating plate

legend

/A P-50-1

O P-50-2
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Figure 15

Experimental and theoretical temlperature profiles
at 100 watts for pure n-octadecane

Figure

15a 0.635 cin from the heating plate

15b 1.27 cm from the heating plate

15C 1.905 ciU from the heating plate

15d 2.54 con from the heating plate
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Figure 17

Experimnential ard theoretical temperature profiles
at 20 watts for filler no. I

Figure

17a 0.635 cil from the heating plate

17b 1.27 cm from the heating plate

17c 1.905 cm from the heating plate

17d 2.54 cm from the heating plate

Legen(d-
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Figure 18

Experimuental and theoretical temperature profiles
at 30 watts for filler no. 1

Firure

18a 0.635 cm from the heating plate

18b 1.27 cm from the heating plate

18c 1.905 cin from the heating plate

18d 2.54 cm froml the heating plate

Legend
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Figure 19

Experimlerntal and theoretical temperature profiles
at 40 watts for filler no. l

Figure

19a 0.635 cm from the heating plate

19b 1.27 cm from the heating plate

19c 1.905 cm from the heating plate

19d 2.54 cm from the heating plate

Legend
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Figure 20

Experimental and theoretical tempcrature profiles

at 50 watts for filler no. 1

Figure

20a 0.635 cin from the heating plate

20b 1.27 cm from the heating plate

20c 1.905 cm from the heating plate

20d 2.54 cmn from the heating plate

Legend
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Figure 21

Expeririici;tal and theoretical temperature profiles
at 100 watts for filler no. 1

Figure

21a 0.635 can from the heating plate

21b 1.27 cin from the heating plate

21c 1.905 cm from the heating plate

21c 2.54 cim from the heating plate
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Figure 22

Hot Plate TemIperatire Profiles for Filler No. 1
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melted compared to the pure paraffin runs. The theore-

tical curves in all cases predict the solid-phase temp-

eraturc profiles exactly, while there is some variation

in the liquid phase. The liquid phase deviations are

always oi~ the high side. If the theoretical analysis had

considered the heat losses, the theoretical temperature

profiles could possibly have been brought down in line

with the experimental data. The phase change times are

all predlicted. The theoretical profiles that curve up

smoothly through the melt point are nodes closer to the

a]lumirl'u.n filler, figure 17, Awhile those that jump sharply

after the phase-change are nodes farther away from the

filler, figure 17b. The hot plate temperature profiles

for filler nu:nber 1 are shown in figure 22.

Figures 23 to 28 show the experimental and theo-

retical results for filler number 2. The same statements

that were made for filler number 1 can be made for filler

number 2.

The results from filler number 3 are plotted in

figures 29 to 32. Note that the theoretical temperature

profiles deviate sharply from the experimental profiles

at the 1.27 cm level. In this case the filler is only

1.27 cm cdeep, and Pwhen all of the n-octadecare has melted

in the theoretical analysis, the whole cell will heat up

rapidly as shown in figures 29b, 29d, 30b, 300 and 31b.
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Figure 23

Experimental and theoretical temperature profiles
at 20 watts for filler no. 2

Figure

23a 0.635 cm from the heating plate

23b 1.27 cm fromi the heating plate

23c 1.905 cm from the heating plate

23d 2.54 cm from the heating plate
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Figure 24

Experimental and theoretical temperature profiles
at 30 watts for filler no. 2

Figure

24a 0.635 cm from the heating plate

24b 1.27 cin from the heating plate

24c 1.905 cm from the heating plate

24.d 2.54 cm from the heating plate

Legend

~A F2-30-1

0 F2-30-2
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Figure 25

ExperiaLental and theoretical temperature profiles
at 40 watts for filler no. 2

Figure

25a 0.635 cill from the heating plate

25b 1.27 cm from the heating plate

25c 1.905 cin from the heating plate

25d 2.54 cm from the heating plate

Legend
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Figure 26

Experimcrcntal and theoretical temperature profiles
at 50 watts for filler no. 2

Figure
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Figure 27

Experimental and theoretical temperature profiles
at 100 watts for filler no. 2

Figure

27a 0.635 cia from the heating plate

27b 1.27 cmn fro-m the heating plate

27c 1.905 cm from the heating playe

27d 2.54 cmn from the heating plate

Legend
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O F2-100-2
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Ilot Plate Temperature Profiles For Filler No. 2
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This is due to the fact that the bottom is conside(red

insulated and there is no more solid to change phase

and thus absorb heat. In the experimcntal cell there is

definately heat loss through the bottom, which could

account for some of this deviation. Also the 2.54 cm

deep cell was modified to test the 1.27 cm deep filler

by inserting a 1.27 cm plexiglass plate. It was nece-

ssary to drill holes in this plate to accomodate the

existing thermocouples. These holes filled with par-

affin. With this extra n-octadecane around the cold

plate or 1.27 cm thermocouples considerable more heat

is absorbed, thus keeping the thermocouple temperature

down. The hot plate temperature profiles for the third

filler are shown in figure 32. It should be noted that

the inflection in the hot plate temperature profiles are

probably due to the presence of air bubbles.

Figures 33 through 37 demonstrate some of the theo-

retical studies that can be made with the mathematical

model developed in this study. In figure 33 the temp-

erature profiles from various filler wall thicknessess

are plotted. It can be seen from these plots that as the

filler thickness increases so does the heat-transfer rate.

This is shown by the way in which the slope of the curve

above the nielt point increases as the wall thickness of

the filler increases.
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Figure 29

Experimental and theoretical temperature profiles
at 20 and 30 watts for filler no. 3

Figure

29a 0.635 cm front the heating plate - 20 watts

29b 1.27 cm from the heating plate - 20 watts

Legend

n F3-20-1

0 F3-20-2

Theoretical

Figure

29c 0.635 cm from the heating plate - 30 watts

29d 1.27 cm from the heating plate - 30 watts

Legend

A F3-30-1

O F3-30-2

- Theoretical
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Figure 30

Experimental and theoretical temperature profiles
at40 and 50 watts for filler no. 3

Figure

30a 0.635 cmn

30b 1.27 cm

Legend
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Figure 31

Experimental and theoretical temperature profiles
at 100 watts for filler no. 3

Figure

30a 0.635 cm froln the heating plate

30b 1.27 c;.i from the heating plate

Legend.
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Figures 34 through 37 are included to show the

temperature profiles in the x-y plane. In figure 34,

there is not much deviation.in the x-y plane. This is

intuitively correct since the graphs were made from data

taken at a time early in the run. As time increased so

does the temperature variation in the x-y plane. (Fig-

ures 35, 36 and 37) :ote that the n-octadecane closer

to the filler rises to a higher temperature than that

farther away at any given time. This type of heating

profile is exactly what is expected with a high thermally

conductive metal matrix in a phase-change environment.

The experimental data in this section could be used

for design providing that the design requirements fall

within the experimental data and situation as presented

in this study. The computer program written for this

study can be used to predict the capabilities of other

thermal-control devices by varyin:g the physical prop-

erties of either the filler or phase-chainge material.

If a different filler geometry is to be studied the

subroutine which calculates the areas of the filler and

phase-change material must be changed to accommodate the

different geometry. If heat loss from the system is to

be considered, the computer program can be modified

as described in the theory section to provide for this.

The computer program written for this study can also be
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Figure 34

Theoretical temperature profiles in the x-y plane at t=
600 sec
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Figure 35

Theoretical temperature. profiles in the x-y plane at t=
1200 sec
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Figure 36

%;.Vci

Theoretical temperature profiles in the x-y plane at t =

1800 sec
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Figure 37

Theoretical temperature profiles in the x-y plane at t=
2400 sec

a -b- b

d
Temperature profile z Th

Figure along line cm c:n

37-a a-b 0.625 0.002985

37-b a-b 0,.625 0.011938

37-c a-b 0.625 '0.017907

37-d a-b 0.625. 0.23876

37-e c-d 0.625 0.002985

37-f c-d 0.625 0.011938

37-g c-d 0.625 0.017907

37-h c-d 0.625 0.23876

37-i a-b 1.27 0.002985
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37-s a-b 1.905 0.017907

37-t a-b 1.905 0.23876

37-u c-d 1.905 0.002985

37-v c-d 1.905 0.011938

37-w c-d 1.905 0.017907

37-x c-d 1.905 0.23876
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used to predict the performaxrce of thermal-control

phase-change devices under different heat loads by

modifireg it to use a heat-flux bourndary condition as

described in the theory section.



RECOMYiENDATIONS AN]) CON}CLUSI OIJS

Conclusicns

Based upon the results of this study, the following

conclusions are presented.

1. As the weight of the filler material increases

the heat-transfer rate of the thermal-control phase-change

device increases.

2. The computer program written for this study

predicts the experimental solid-phase-tenmperature profiles

and the phase-change times correctly. While the maximuin

deviation between the theoretical and experimental solid-

phase-temperature profiles is 2.8 0 K° (5 0 F), there is

essentially no deviation in most of the runs. There is

as much as 14 0 K (250 F) deviation between the theoretical

and experimental results in liquid phase. This deviation

could possibly be corrected by changing the boundary

condition alorng the bottom plate, in the computer program,

to one in which heat loss is allowed.

3. The mathematical ;nodel presented in this study

is general in terms of variable filler geometry, physical

properties of the filler and phase-change material and the

types of boundary conditions that can be placed on the

theoretical model. The computer program written for this

study is general in terms of variable physical properties

99
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of the filler ac!, phase-charige material and sizes and

shapes of the hexagonal filler. While the computer

program is written for insulated boundaries along the

bottom and four sides, it can be easily .modified to

allow for heat loss or gain along these boundaries.

The computer program uses a temperature profile on the

heating plate but this boundary, as discussed earlier,

can also be changed to utilize a heat-flux boundary

condition.

4. A three-dimensional analysis is needed'to see

the detailed temperature profiles in the x-y plane. As

shown in the discussion of results section these theo-

retical temperature gradients can be as much as 11.10 K

(200F).

5. This study has shown that to correctly model

the experimental system the Ileat losses must be known

or predicted. If a heat-flux bourdary condition is to

be used in the theoretical model, the heat-flux into the

test chamber must be accurately known.

Reco:nmienc'atiorns

The following recorruren.datiots are presented based

on the results of this study.

1. The test cham:iber should be redesigned in such

a way as to eliminate air bubbles.

2. Since the n-octadecane used in this study tended
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to trap air in the solidification process, other phase-

change materials should be considered. These other

materials could include lithiun nitrate trihydrate and

acetamide.

3. Since the filler material adds weight to the

phase-charnge thermal-corntrol unit, and subtracts from

its heat-absorbing capacity, other filler materials and

geometries should be studied with the goal of optimizing

the ratio of filler material to phase*-change material.
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NOMENCLATURE

a,b,c Coefficient of the unkrnown temperatures in the

tridiagonal matrix

A The cross sectional area perperidicular to the

heat flux; cm2

C The heat capacity; watt-sec/gm/° K

G Amount of energy generated per ur.it volune;

watt-sec/cc

h The heat-transfer coefficient; watt/sec/cm2

Hf Enthalpy of liquefaction; watt-sec/gmn

I The last node in the x-direction in the nodal

network

J . The last node in the y-clirection in the nodal

network

CK The last node in the z-direction in the nodal

network

K Thermal conductivity; watt/cm/°K

q The heat flux; watt-sec/cmn

T Temperature; °K
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T
e

Th

T
mo

I1

t

At

V I

V

P

( CpV)eff

(IKA) eff

The excess degrees; 0K

Wall thickness of the filler; cm

The initial melting temperaturc;; K

The melting temperature; OK

Time; sec

Incremental time; sec

The volumne of the material that generates

energy; cc

Volumle; cc

Density; gm/cc

The effective (pCpV) for a nonhomogeneous node;

watt-sec/0K

The effective (KA) for a nonhojmogeneous node

watt-cm/°K

Subscripts

x X-direction which is along an axis parallel to

the 15.24 cm side *f the test chamber

Y-direction which is along an axis parallel to

the 7.62 cm side of the test chamnber

y
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z Z-direction which is along an axis parallel to

the 2.54 cm side of the test chamber

i Indicates the x-dlirectioli in the finite

difference formulation

j Indicates the y-direction in the finite

difference formulation

k Indicates the z-d(irection in the finite

difference formulation



APPENnDIX I

Computer program to solve the nonhomogeneous phase-change
problem.

This computer progra-m was written i n FORTRAN IV to

solve the nonhomogeneous phase-change problem presented

in this study. This program uses 14 cards of input data.

The coefficients of the three straight-line fits for the

hot plate temperature profiles are read on the first 3

cards. The physical properties of the filler and phase-

change material are read on the next 9 cards. The filler

geometry is specified by the last 2 carets. The following

table specifies the exact variable to be read on each card.

VARIABLE

Card 1

Al

B1

TI1

Card 2

A2

132

TI2

Coefficient of t in T = At + B; 0 F/min

B in T = At + B; OF

The last time for which Al and B1 hold; min

Sai;.e as Al

Same as D1

The last time for which A2 and B2 hold; min
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VARIABLE

Card 3

A3

B3

Card 4

DIF

TM

TA

Card 5

CPM

HF

TS

Card 6

ATI

XIC

Card 7

TH

RF

CPF

Card 8

FK

Card 9

DX

DY

DZ

Samne

Same

as Al

as B1

The melting temperature range; OF

The initial ielting point; OF

The initial temperature of the test cell; OF

The heat capacity of the melting paraffin;
BTU/lb/F 

Enthalpy of liquefaction; BTU/1,

The ending time of the run; min

The time for the first print out; min

The time increment between print outs; min

The wall thickness of the filler; in

Density of the filler; lb/cf

Heat capacity of the filler; BTU/lb/°F

Thermal conductivity of the filler; BTU/ft/hr/°F

Length of the node in the x-direction; in

Length of the node in the y-clirection; in

Length of the node in the z-direction; in
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VARIABLE

Card 10

DT

PKS

PKL

Card 11

RPS

RPL

cPS

Card 12

CPL

Card 13

NX

I1

I2

Card 14

NY

N2

N4

Time increment;_ sec

Thermal conductivity of the solid phase-change
material; BTU/ft/hr/ F

Thermal conductivity of the liquid phase-change
material; BTU/ft/hr/ F

Density of the solidc phase-change material; lb/cf

Density of the liquid phase-change material; lb/cf

Heat capacity of the solid phase-change material;
BTU/lb/ .

Heat caoacity of the liquid phase-change material;
BTU/lb/°F

The number cf nodes in the x-direction plus 1

The first node of the angular section of the filler

The last node of the angular section of the filler

The last node in the y-direction plus 1

Set equal to 3

The last node in the z-direction plus 2
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DIMENSIOtN VP(7,7),VF(7,7)
)DIltESI rOlI A(32), R(32) CC(32) t0(32), T(32)

DIME'.SION APXI (7,7),AFXI(7.7)
DIMEl>SIOJ APYI(7,7 ,AFYI(T,7)
DItfElSI10J T1(7,7,37?) T2(7,7,32),T3(7,7,32)
D1 MEENS I ;J TE(7,7,32) ,KJ(7, 7,32)
DIMEHI sIOJ AP?(7,7),AF;(7,7)
COHMMON /S1/ rJ4,JI JK
COMMON /S2/ VP,VF
COMMON /S3/ APXI,AFXIrFx
COMMnN ,'S4/ APYI,AFYI,0Y
COMMON /S5/ AP',t,Fz;N
COMMONl /S6/ ABCC,0
COMMON /S7/ TM,JHFjCPItDIF,VT
COMHoN /SR/ AlA.,A3,BltP2sB33TPlTI2,tTI
COMOti /.; 9 / PKS, PK
COHMmnlij /S1-/ RPL,RPS,CPS,C'L

c,,,,,,,,,,,, "!2 .,ODE THAT STARTS THE TEST MATERIAL
C,..,..,,.NK4+* THE NO, OF NODES IN THE TEST MATERIAL
C,,,,.i,,,, ,VF=VOL OF FILLER * ROE(F),*P(F)/DT
C, ,,t , ,i,,VP=VOL OF PARA, * ROE(P)*CP(P)/DT
C,,,O,,,,, ~'X : f!Oe nF NODES IN X DIR,
Cts , ,,, I ,NY= ,.'Oi O0r NODES IUN y o!'R
C,,,,, ,,,. !Zr 1'JO, OF NODES IN ? DjIR,
C t. *.,, , . '. TH ELT TE"IP, OF PARA,
C ,L.,,,, ,,,fe HiEAT OF FUSSIONI OF THE PARA,
C ,,,,,,,' Cp4!=HEAT CAPACITY OF THE PARA, AT THE MELT TEMP,
C ,tftef,,,CPP:rlc AT CAPACITY OF PARA,
C t0, F ,CPF=llEAT CAPACITY OF FILLER
C ,,,.,ot (f, rFDEIfS!yTY OF FILLER
C,'', , ,,, ,'',, PrE!SITy OF PARA,
C ,. ',,,,, . ,PK:T#4HERMAL4 COND, OF PARA,
C,,,,',,,F,,,,HlFKcTErAL COND, OF FILLER

READ(2, 6q'/) A l , I I, A2B2, TI2 A3, 33
READ(2i60t" ) DOIFTMTACPlH"F, TS, ATI, XIC
READ ( 2 i6,) THIRFiCPFiFK
READ(2s 6.3) DXDYD IDTIPKSPKL
READ(2,6f',2) RPSRPL,CPS, PL
READ(2,6e1) MXit 1i I I 2 lYi N2 t N4

609 FORHAT(61)
600 FOORMAT(3F)
601 FOnMAT(31 )

WRITE(l.6¢2) Alv,9lTIitA2BR2,Tt2A3.83;
WRITE(1,6'.3) DIF,TM,TA, CPMHFTS,ATI ,XIC
WJRITE ( ,,4 ) Tll,FCPFCPFFK
WRITE(1,605) DX, OY#DpDTToPKSPKL
WRITE(i,627) RPSRPL,C'PS, CPL
WRITE(1,:i0A) MXiIII 11, 2 YN2 ;, 4

602 FORMAT(4Yt 'A1:-'rta84l DEGF/t'IN',7XrB:1.'T,F8,4i DECGFi,
15XI TIlt, F8 , 4 FllNit/ 4X IA= t F 8,4it DEEG F/IHJ
27XtB E2= ' F,,4 DEGF SX, T1 2I', ,4,C HI N'/,
34X IA.3=It F3,4, DE.F/1IN' ,7X 'L33:= ,F8,.4, f )GFI )

603 FORMlAT(3X, 'DIF=',F8,4,' rEGFtXI 'T=ItF8S,4,I DEGF',6X. 'TA:',
1F8,4 ' OFGF'/3X'(lCPM= 8 tF8,4,t9 BTUL/LB ,9X,'H F'F'F8,O4 B' TU/LB',
24XI TS- fFq,4, MI'!l /,t3X, 'AT'I=t FB,4, ' MlNtI .Xl 'XIC-''
3F8,4,' HIN',)

604 FORHAT(4XY. 'THl'F84, I 'iCHES t9X t'RF =,F8,4, LR/CFft4X, C;F,:it
,FS, 4i ' BTU/L;i/DECF' , /,4X ' tFK= ,F8,4,t '3TLJ/FT/HIR/DEGF ) 

605 FORMAT(4X, 'DX:IF84S4, IHCHES',9X, rnY=I FB, 49 INCHES'
.1,4X, ttZla ,Fr,4, I'jCHES It//4X, CDT='tF8'4, SEC, t4XIt PKS=-sFS,,4t



111'
1'BTU/FT/HR/DECF'l3X,'tPKLc'3FS,4t' BTU/FT/HR/DEGF')

606 FORMAT(4X,tNXt, 131 21X'Ili!',I3,16X,'12't 13,/4X, tNY=113.
121X 'a2= ',I3p1iC6XDN4=,1j3)

607 FORMAT(4X,'RPSe!,F8,4,'LB/CFtt3XstRPL'tFS,4w'LB/CF'

3X, ICPS;F ,8.4l, BTU/LBI3 /#4X,'CPL=' ,F,4,' BTU/LB')
599 N3N;2*li

NZ=N4#
Ni! ; N 
DT=DT/60,/60,
NX=H1X*1
NYPMYl.
DX;DX/12.
DY=DY/12,

VTFDOX*DY*D
TH=TH/12,
CALL AREA(III2,THDDXDYIDDTDRFDCPFFK)
00 5 K=2,NF
00DO 5 J;2,NY
DO 5 Ia2,NX
TI(I#JK)=TA
T2(IJ,K)=TA
T3(!,JK)ITA
Kj( I j s'r() I

5 CONTINUE
6 CALL TN(TBI)

TI=TIe2,*DT*60,'
CALL TRN(TB2)
TB(TBi*TB+2)/2,'
DO 7 J=2,NY
DO 7 IC2,NX
TI(I#J#2)MTB
T2(IJi2)=TB
T3(IJ,2)=TB

7 CONTINUE
C,',s,',"'SOLVING FOR T2

DO 15 K=3,NZ
KKPK*I
DO 15 J=2,NY
JJ=J+1
DO 10 I=2,NX
CALL KC(C,KJ(IJ,K))
IfI*I+
CALL Ki(C¢I,#IKJ(IJK)
CALL KI(C!2,II,KJ(, tj, K))
CALL K2(C21iJKJ(I,o K))
CALL K2(C22,JJPKJ(I,JK))
CALL K3(C31,KKJ(I J,K))
CALL K3(C32,KK,KJ(I,,J, K))

621 FORMAT(' CS',312,4E)
6±0 FORMAT(' O0E'312,5E)

A(I)=~Cl/¢/oX
B(I)=l-,+(Ol l+O2)/C/ CX
CC(I):-CI2/C/DX
O(1):I'I(I,J~K)
2IP(C2,i*Tl( lJ)(C)21 22)*T(IJK)+C22*T(IJ+ K))/C/DY
O(I):P(I)*tl
E2p(Ci*TI(I, JK~I)-(¢3%+C32)*TI(,JK)*C32*TI(IJ//

612 FORMAT(3X,4E)
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D( I ):D( I )*2
611 FORMAT(3E)
l0 CONTINUF

CALL SOLVE (T,2,NX)
DO 12 KI=2,NX

12 T2(KI,J,K)=T(KI)
15 CONTINUE
C',,,,,,SOLVING FOR T3

DO 25 1-22NX
II~I*l
DO 25 K=3N,1
KK=K+j
DO 20 J=2,NY
CALL KC(C,KJ(I,J,K))
JJ=J*+
CALL K2(C2l,J,KJ( IJ,K))
CALL K2(C2R2JJKJ( ,JK))
A(J)t- ,21/C/DY
B(J),,'+*(C21+C22)/C/DY
CC (J)=-C22/C/DY
Z-(CP2!C22)*Tl( I ,JK)wC2#T1( I J' .,K)"C22*Tl(I~J+ K I)

D(J)=T2( IJK)*Z
20 CONTINUE

CALL SOLVE (T,2,NY)
DO 22 K:2tNY
T3(IKI ,K)T(KI )

22 CONTINUE
25 CONTINUE

DO 28 K=2,NZ
00 28 J=2,NY
00 28 I-2,NX
T2(IwJK)=TX(IlJK)

28 CONTINUE
C',', ,,,,SOLVING FOR T1

DO 35 =2,jNY
JJ=J+*
DO 35 I;2,NX
I II+1
DO 30 K-3,#N.
CALL KC(CKJ( I J,K))
KKnK+i
CALL K3(C31,KKJ(IJ,K))
CALL K3(C32,KK,KJ( IJK))
C33;C31
EC=¢,
IF(K,GT,3) GO TO 29
EC=T2(I IJ,K)-1)C3I/C/DZ
C3 3 c,

29 A(K):=C33/C/DE
B(K) a, +(C31+C32)/C/DZ
CC(K)= C32/C/OZ
n(K);2g*T3 (I#J#K)eT2(1J,#K)

¢C31*C32 ) T2(I, JK)-C31*T2(I, JK-1)-C32*T2( I JK+1)

D(K):D{')+Z+EC
30 CONTINUE

CALL SOI,VE (T,3,NZ)
DO 32 KI=3,Nt
Tl(IsJKI )=T(KI)
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32 CONTINUE
35 CONT I NilUE

DO 37 Kc'42,N2
00 37 J:2,NY
DO 37 I:2,JX
CALL. PliASE(T1(IJK),KJ(I,J,K),TE(I,JK),VP(IJ),T2(IoJ,K),OT)

37 CONTINUE
38 IF(TT,LTATI) GO TO 6

WRITE(i,42) TI,TB
DO 40 K:2,Nt,4

L2-K+1*
WRITE(V.4i) *L (T1(I ,2,L1) I2,NX)
WRITF(J,4l) Lbp(TI(I,3,LI)tI=2tNY)
WRITE(lo41) K,(TI(,lt2K)I: 2eNX)(
WRITE(1,41) K(Til(C ,3,K),I=2,NX)
WRITE(,l41) L2,(Tl(I,2,L2),I:2jNX)
WRITE(e,41) L2,(TI(I.32L2)oI=2,NX)
WRITE( ,444)

40 CONTINUE
444 FORMAT(//)
45 FORMAT(4(3Xp3I12F6, l))
41 FORMAT(3X,13,4(3X,F6,V))
42 FORMAT(//3X,'TIMEx',FBg,j3 MIN,'t,3X,'T:B= ,F6,1,/)
43 FORMAT(lilXs2(2I2,5X))

ATI=ATI+XIC
IF(Tl,CTTS) GO TO 999
GO TO 6

999 STOP
END
SUBROUTINE AREA(Il I2tTH,DOXDYDiDOT,RFCPF,FK)
DIMENSION VP(7,7),VF(7,7)
ODIENSION APXI(7,7), AFXI(7,'7)
DIMENSION APYI (7,7),AFYI (77)
DIMENSION APZ(7,7),AF7(7,7)
COMMON /S2/ VP,VF
COMMON /$3/ APXI,AFXI,NX
COMMON /$4/ APYI,AFYI,NY
COMMON /S5/ APAFo,;NZ

I#C,,,,,,,, ,x>DY>Y/((TA !(AA-9OlDEGl'
C.. . .. ,- . . . * * . ., . HMERRE J
C, ,,, ,,,,,,,,,,,'',AA= THE ANGLE THE FILLER MAKES WITH THE HORISiONTAL
C,-,,,,t,,,,,,,,,,IIWNE , OF NODES IN THE X DIR,
C,,,,,,,,,,,,,,JJIINO, OF NODES IN THE X DIR,
C,.,,, ,,,,: ,., O.I1= O.' OF NOOES TO THE ANGLE PART OF THE FILLER
C,.,.,.,.,,,,,, ,I2= NO, OF NODES INl THE ANGLE PART OF THE FILLER
C,,,, ,,.,.,.,.,,,,, . 12 MUST BE INTERGERS
C,,I,,§,, , ,,,, .. .TH=FILLER THICKNESS
C,,.,,,..,,,,,DX=nELTA X
C.,,,,,,,,,,,.,,,,DY=DELTA Y
Ce,,,, ,,,,,,,,,,,, DELTA Z
C,',,,,, I ,,, ., ,THIS SU;ROlU T INE '!WILL PRODUCE THE FOLLOWING ARAYS]
C ,,;,,,,,,,,,,,; ,.,APXI=AREA OF PARA, IN NODE I,J IN THE X DIRi
C**,,, ,.,,,,,,,,, AFXI~A AEA OF FILLER IN NODE I,J IN THE X DIH,
C ,,,,,, ,,,,,,,,,,,APYIAREA OF PARA, IN NODE IJ IN THE Y DIR,
Ct,,.,,,,,,,,,,,,AFY IAREA OF FILLER IN NODE I,J IN THE Y DIR,
C, f,,,,,,, ,, ,,APF=AREA OF PARA lN THE F DIR, IN NODE IIJ
C,,,,,,,,,,,,,,,.,, AFt : AREA OF FILLER IN THE F DIR, IN NOUE I.J

C ,,,,,,,.,,, ,,.,VP=VOL, OF PARA IN NODE I,J
C,,,, ,,,,,,,,,,, VF=VL, OF FILLER IN NODE IJ
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IU=NX-I
JU= NY I

JL l
TAFLOAT( 2-I11)/FLOAT(JU.JL*,1)
AA4ATAi(TA)
R=FLOAT(12-I1)*DX*FLOAT( 11)*DX
DO 50 J,jL,)JU
YL;FLOAT(JU-J+1)*DY
YUFFLOAT( JUJ) DY
XL=R-TA*YL
XU=R-TA*YU
DO 50 I=IL,IU
IF¢I,LEI1) GO TO 10
IF(I,LE,12) GO TO 20
IF(I,LE,IU) GO TO 33

10 IF(J,GT,JL) GO TO 14
11 APXI(IJ)=nDZ(OY-TH/2 1)

APYI(It,J)0,
AFE(I J):DX*TH/2,
AFXI(I ,J):D*TH/2,
AFYI(IJ)=0,
IF(I,EO,IL) GO TO 12
IF(J,EQ,JU) GO TO 34
GO TO 52

12 APXI(I,J);0m
AFXItI,J);=,
GO TO 52

14 APXI(I,J)oDY*DZ
APYI(ItJ)=DX*D?
AFXI ( I ,4) ,
AFYI(I J)=O,
AFE(IJij)=
IF(XBL,EQ,XL) GO TO 18
IF(XL!-DX,EQO,XU) GO TO 19

16 IF(IEO,IL) APXI( IJ)=0,
IF(JEO,JL) APYI(IIJ)=O,
GO TO 52

18 APYI(IJ)= D0E(DX-TH/4,)
AFYI(ItJ):DX*TH/4,
GO TO 16

19 APXI(IJ):Dt*(0DY-TH/4,)
AFXI(I,J)=OZ*TH/4,
GO TO 16

20 XBL:FLOAT(I)*DX
IF(XiL,LE,XL) CO TO 14
IF(XBLDnX,GE,XU) GO TO 14
Xt=XFL XL
IF(.Xl',GT,DX) GO TO 28
IF(XU,LT, XL) XI:XU-XL
H X1/SIN( A A)
Yl=X1/TA
APXI(II,J)=D*DY
APYI(I J)=D*t(DX.TH)
AFP(I,J)=H:*TH
AFXI(I J):,0
AFYI(I J)JZc*TH

21 IF(XBL.DXE, jXL) GO TO 31
22 IF(I','EqI1,AANDJEQOJL) GO TO 26
23 IF(J,EO,JL) GO TO 25
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GO TO 52

25 APYI(I,J):C,
AFYI(I,J)z[1,
GO TO 52

26 APXI(I,J)DZ*(ODYTH/2, )
AFXI(IJ)=PDtTH/2,
GO TO 23

28 Y2pDYrYj
HIY2/COS (AA)
APX ( I ,J) =i* (DY.TH)
APY I ( I * J ) = Xt l
AF (!t, J )=TH. - i
AFXI I .J):DZ*TH
AFYI(I ,J)=,,
GO TO 21

3i APXI(I~j)J)~( DY..TH/4,)
AFXI(I,J)n?*THT/4,
APYI(I,J):rj(7¢X- TH/4,)
AFYI (IJ):AFXI(I,J)
GO TO 22

33 IF(JEG,JU) GO TO 11
GO TO 14

34 APYI(IJ)=DO *OX
GO TO 52

52 AP?(I, J) =UX*DY-AFt( IJ)
VP(IJ)=./Pe(~Jj)*DZ
VF(IJ)=-AF( I ,JI)*0,
APXI(I1J-1lJ)=-,
APYI(I#JU*i)=a,
AFXI(II;+liJ)-3,
AFYI(I,JU*I): ,
XBL=-,'

VF(I,J):VF(I,J),RFCP.F'/DT
VP( IJ)VP(I J)/DT
AFXI(I,J):AFXI(I,J)4tFK
AFYI(I,J);AFYj(I(,J)FK
AFt( ,j) AF(I , J).FK

50 CONT ;JU;E
100 FORHAT(1X,212j4E)
101 FOR:IAT(iX,4E)

APXI(lU*I, JU+S): ,'
APYI ( Il!U*, ll+ ) :I ,
AFXI t(I*1,JU *1?:.~
AFYI (U+I, JU* i):,7
DO 290 I:IU,ILL,-
DO 2H0 JIJUJL,-i
APXI(I*I,J+I):APXI(IJ)
APYI I*1,J+i) PYI (I J)
AFXI ( I*+ .J1)=:AFI (I 
AFYI( I*J+ )=AF' I (IJ)
AP?(I+*#,J+I): AfZ(I J)
AFZ(I1+,J*I):AF'?.(I),
VP(I'IJ+I)-:VP(I,J)
VF(I+li,J+);VF(IJ)

20a CONTI NI [E
00 210 Ii,.IU
APXI(I,JL):V,
AFXI( IJL):"',
APYI(I,JL)=F* I

! I I ' I I ' ' '! ' ' ', ' I I I I .....
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AFYI(I,JL)=Os
AP (IJL)PO,
AF (IJL)=~I,
VP(I,JL )a;
VF(IoJL):Oo

210 CONTINUE
DO 215 Ja1,JU
APXI (ILJ)=; 
AFXI ( ILJ):f
APYI( ILJ)=0
AFYI(IL,J)=0,
APF(IL,J):O,
AFF(IL,J)=O,
VP(IL#J)=Oo
VF(ILdJ)t0,

215 CONT I NUE
501 FORMAT(2X,212,2F)

RETURN
END
SUBROUTINE KC(C,KZ)
DIMENSIDO! VP(7,7),VF(7,7)
COMMON /S1/ N4,oI,JK
COMMONI /!-/ VPsVF
CALL HC(KZRP,CPP)
V1=RP4rFPP*VP(IJ)
V2RVF(IJ)
C=VI*V2
IF(K,E0,N4) C=C/2,

100 FORIMAT( t SCt,3E)
101 -FORMAT( t $CI,3I2,4E)

RETURN
END
SUBROUTINE KI(ClI!,L)
DIMENSION APXI (7,7), FXI(7,7)
COMMON /S1/ N4,I,JK
COMMON /S3/ APXI,AFXI,NX
IF(II' II,',ElN' I) GO TO 60
IF(II',Q,2) GO TO 60
CALL TP(L,PK)
AlAPXI (II,J)*PK
A2=AFX (II J)
IF(K,EQ,N4) GO TO 40

C,,,,, PARAFFUI AND FILLER NODES
GO TO 65

40 A1IAI/2,
A2:A2/2,
GO TO 65

60 A1:O,
A2*0,

65 C1;A1+A2
100 FORMAT(' C1 ',312,2E)
101 rORMAT(4F)

RETURN
END
SUBROUTI NE K2(C2,JJ,L)
DIMENSIONr APYI(7,7) ,AFYI(7,7)
COMMON /S1/ N4tI,JK
COMMON /S4/ APYI,AFYINY
IF(JJ','FQ,'NY*l) GO TO 60
IF(JJ',EQ,2) GO TO 60

C-
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CALL TI-(L..,PK)
Al=APYI(I ,JJ)PK
A2:AFYI(IJJ)
IF(K,EOD.4) GO TO 40

C,'',,", , ,PARAFFIN AND FILLER NODES
GO TO 65

40 AI5AI/7,
A2;A2/2,
GO TO 65

60 A I Al=,Z
A2',0

6.5 C2=Al+A2
100 FORMAT(' SC2',312,2E)
101 FORMAT(4E)

RETURN

SUBROUTINE K3(C3,KK,L)
DIMENSrO;1 APZ(7,7),AFZ(7,7)
COM MON. /Si/ N14,I,J K
COMMON /S5/ AP2,AFtNt
EC=3,
IF(KK','EQ',Ni1l) GO TO 60
CALL TH(L,PK)
A:=APt(I,oJ)PK
A2=AFl I J)

C,,, ,,,PArAFFI'J AND FILLER NODES
GO TO 65

60 Alz,
A2=01

65 C3=A1+A2
100 FORMAT(t SC3',3I2,3E)
101 F )PMAT(4E)

RETURN
END
SUBROUTINE SOLVE (T,Jl#J4)
DIMENSION A(32),3(32) ,CC(32),D(32),T(32)
DIMENSION W(32),G(32)
COMMON /S6/ AB,8CC#D
J2=J*l+1
J3cJ4"t
W(Jl)=H(Jl)
G(J)-o(CJl)/W(Jl)
DO 20 I=J2#J4
X~C¢(I-l)/W(Ivl)
W(!)=B(I)eA(I))X
G(1)=-( (I1)-A( I )*GI1))/W(I)

20 CO NTINUE
T(J4)zG(J4)
oo00 30 I J3J1ei
X;CC(I)/W(I)

30 Tt I )G(I) I )-X*T( *1)
101 FORMAT(/)
100 FORMAT(5E)

RETURN

SUBROUTINE PHASE(TKi 9 TX,VTODT)
COMMON /S7/ TM,HFCPMtDIFVT
VPPV*DT
]F(KiGT,i) GO TO 20
IF(T,LT,TM) GO TO 20

... .I . II I. ~ -1.1- 1~~ III I I.1. -, ,, + . - .' --I " . -. - .
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SUM:=TTO+TX
IF(SUM*VTOCPM/VP,GE,HF) GO TO 12
TX=SUM
T;TM+D I F S LiMC PM VT/VP / H F
GO TO 20

12 T;DIFTt+(SUM*CPM*VT/VP-HF)/CPM
KZ:2

20 RETURN
END
SUBROUTINE TH(L,PK)
COMHON /S9/ PKS,PKL
IF(LGT.1) GO TO 10
PK!PKS
GO TO 20

10 PK=PKL
20 CONTINUE

RETURN
END
SUBRnUT I!E HC(L,RP,CPP)
COt.MIFN /S11/ RPL,RPS,CPSCPL
IF(L,GT,1) GO TO 12
CPP=CPS
RP=RPS
GO TO 14

12 RP:RPL
CPP:CPL

14 RETURN
END
SUBROUTINE IBN(TB)
COMMON /SS/ AIA2pA3p8lB2,B3#TIlITI2#TI
IF(TI,'LE.TI1) GO TO IO
IF(TI'LE','TI2) GO TO 20
GO TO %0

10 TB-Ai*TI+ B1
GO TO 40

20 TB=A2#TI+B2
GO TO 40

30 TB=A3*TI B3
40 CONTINUE

PETURN N
END




